Algebraic Hypergeometric Transformations of Modular Origin

نویسنده

  • ROBERT S. MAIER
چکیده

It is shown that Ramanujan’s cubic transformation of the Gauss hypergeometric function 2F1 arises from a relation between modular curves, namely the covering of X0(3) by X0(9). In general, when 2 N 7, the N-fold cover of X0(N) by X0(N) gives rise to an algebraic hypergeometric transformation. The N = 2, 3, 4 transformations are arithmetic–geometric mean iterations, but the N = 5, 6, 7 transformations are new. In the final two cases the change of variables is not parametrized by rational functions, since X0(6),X0(7) are of genus 1. Since their quotients X + 0 (6),X + 0 (7) under the Fricke involution (an Atkin–Lehner involution) are of genus 0, the parametrization is by two-valued algebraic functions. The resulting hypergeometric transformations are closely related to the two-valued modular equations of Fricke and H. Cohn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic transformations of Gauss hypergeometric functions

This paper classifies algebraic transformations of Gauss hypergeometric functions and pull-back transformations between hypergeometric differential equations. This classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.

متن کامل

On Rationally Parametrized Modular Equations

Many rationally parametrized elliptic modular equations are derived. Each comes from a family of elliptic curves attached to a genus-zero congruence subgroup Γ0(N), as an algebraic transformation of elliptic curve periods, parametrized by a Hauptmodul (function field generator). The periods satisfy a Picard–Fuchs equation, of hypergeometric, Heun, or more general type; so the new modular equati...

متن کامل

Transformations of hypergeometric elliptic integrals

The paper classifies algebraic transformations of Gauss hypergeometric functions with the local exponent differences (1/2, 1/4, 1/4), (1/2, 1/3, 1/6) and (1/3, 1/3, 1/3). These form a special class of algebraic transformations of Gauss hypergeometric functions, of arbitrary high degree. The Gauss hypergeometric functions can be identified as elliptic integrals on the genus 1 curves y = x − x or...

متن کامل

Transformations of algebraic Gauss hypergeometric functions

A celebrated theorem of Klein implies that any hypergeometric differential equation with algebraic solutions is a pull-back of one of the few standard hypergeometric equations with algebraic solutions. The most interesting cases are hypergeometric equations with tetrahedral, octahedral or icosahedral monodromy groups. We give an algorithm for computing Klein’s pull-back coverings in these cases...

متن کامل

Transformations of Gauss hypergeometric functions

The paper classifies algebraic transformations of Gauss hypergeometric functions and pull-back transformations between hypergeometric differential equations. This classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006